Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange.
نویسندگان
چکیده
Their glycolytic metabolism imposes an increased acid load upon tumour cells. The surplus protons are extruded by the Na+/H+ exchanger (NHE) which causes an extracellular acidification. It is not yet known by what mechanism extracellular pH (pHe) and NHE activity affect tumour cell migration and thus metastasis. We studied the impact of pHe and NHE activity on the motility of human melanoma (MV3) cells. Cells were seeded on/in collagen I matrices. Migration was monitored employing time lapse video microscopy and then quantified as the movement of the cell centre. Intracellular pH (pHi) was measured fluorometrically. Cell-matrix interactions were tested in cell adhesion assays and by the displacement of microbeads inside a collagen matrix. Migration depended on the integrin alpha2beta1. Cells reached their maximum motility at pHe approximately 7.0. They hardly migrated at pHe 6.6 or 7.5, when NHE was inhibited, or when NHE activity was stimulated by loading cells with propionic acid. These procedures also caused characteristic changes in cell morphology and pHi. The changes in pHi, however, did not account for the changes in morphology and migratory behaviour. Migration and morphology more likely correlate with the strength of cell-matrix interactions. Adhesion was the strongest at pHe 6.6. It weakened at basic pHe, upon NHE inhibition, or upon blockage of the integrin alpha2beta1. We propose that pHe and NHE activity affect migration of human melanoma cells by modulating cell-matrix interactions. Migration is hindered when the interaction is too strong (acidic pHe) or too weak (alkaline pHe or NHE inhibition).
منابع مشابه
Insulin increases acid production and may directly stimulate Na/H(+) exchange activity in cultured vascular smooth muscle cells.
Insulin was reported to decrease Na(+)/H(+) exchange activity in murine vascular smooth muscle (VSM) tissue. In most other cells, insulin increases activity. We tested the effects of insulin on Na(+)/H(+) exchange activity in primary cultured canine VSM cells. Intracellular pH (pH(i)) was measured with 2',7'-bis(2-carboxyethyl)-5-carboxyfluorescein fluorescence and Na(+) uptake by isotopic meth...
متن کاملNa+/H+ exchange and pH regulation in the control of neutrophil chemokinesis and chemotaxis.
Large proton fluxes accompany cell migration, but their precise role remains unclear. We studied pH regulation during the course of chemokinesis and chemotaxis in human neutrophils stimulated by attractant peptides. Activation of cell motility by chemoattractants was accompanied by a marked increase in metabolic acid generation, attributable to energy consumption by the contractile machinery an...
متن کاملNHE1, NHE2, and NHE3 contribute to regulation of intracellular pH in murine duodenal epithelial cells.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i...
متن کاملExtracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells
Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour sp...
متن کاملIntracellular pH in human arterial smooth muscle. Regulation by Na+/H+ exchange and a novel 5-(N-ethyl-N-isopropyl)amiloride-sensitive Na(+)- and HCO3(-)-dependent mechanism.
We investigated in a physiological salt solution (PSS) containing HCO3- the intracellular pH (pHi) regulating mechanisms in smooth muscle cells cultured from human internal mammary arteries, using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and 22Na+ influx rates. The recovery of pHi from an equivalent intracellular acidosis was more rapid when the cells were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 567 Pt 1 شماره
صفحات -
تاریخ انتشار 2005